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Reverse control of biological networks to restore 
phenotype landscapes
Insoo Jung, Corbin Hopper, Seong-Hoon Jang, Hyunsoo Yeo, Kwang-Hyun Cho*

Biological systems consist of genetic elements and their regulatory interactions, forming networks that maintain 
life. However, accumulated alterations such as DNA damage can distort biological behavior, leading to undesir-
able responses to stimulus. This raises the question of whether we can restore their nominal stimulus-response 
relationships. Current control approaches tend to enforce a single desired response rather than restore the proper 
capacity for variable responses to different stimulus. Here, we present an algebraic reverse control (ARC) frame-
work for reversion of altered biological networks. ARC leverages matrix operations to quantify the phenotype land-
scape of the altered network and identifies reverse control targets for recovering the phenotype landscape of a 
nominal network. ARC is scalable to large Boolean networks and identifies effective control targets to restore bio-
logical behavior.

INTRODUCTION
Biological systems have evolved to produce appropriate responses for 
each external stimulus from their environment to survive. These re-
sponses codify the nominal dynamical behavior, which is essential 
for living organisms to maintain their life. However, this nominal be-
havior can be distorted by accumulated alterations, such as DNA dam-
age or epigenetic changes, leading to undesirable stimulus-response 
relationships. For instance, a cancer cell may exhibit uncontrolled pro-
liferation irrespective of external growth factor signals or apoptotic sig-
nals (1–4). A key question arises as to whether we can control these 
altered biological systems to recover their nominal dynamical be-
havior and, if so, how we can achieve this control (5).

To address these questions, we investigate biological systems to 
analyze the recovery of nominal dynamical behavior. Biological sys-
tems are composed of molecular components and complex regula-
tory interactions between them. These systems and their dynamics 
can be represented by complex molecular regulatory networks. In par-
ticular, we use the Boolean network model, which despite being 
one of the simplest mathematical models, still effectively captures the 
essential dynamics of complex biological systems (6–8). A Boolean 
network model is a logical dynamic model with binary node states, 
where each node represents the activity of a molecular component 
[high (1) or low (0)]. Regulatory interactions between molecular com-
ponents are represented by logical links connecting the nodes, with-
out the use of kinetic parameters. The network state, defined by the 
collection of node states, eventually converges to a steady-state known 
as an attractor, while the basin of an attractor is defined as the set of 
network states that converge to the same attractor.

From a systems perspective, the steady-state value of the output 
nodes within each attractor can be defined as the phenotype of that 
attractor, which corresponds to the phenotype of that biological sys-
tem. Therefore, the phenotype landscape, comprising all phenotypes 
of attractors and their respective basins, contains the network state 
sets grouped by their phenotype after convergence. The landscape is 
crucial for understanding system behavior, as it encodes both the 

relative likelihood of each phenotype and the internal node states 
that influence phenotypic changes in response to epigenetic modifica-
tions, mutations, and external pathways outside the model. However, 
the nominal phenotype landscape can be distorted by accumulated 
alterations, in turn changing the resulting behavior of the system. In 
this study, we define the reversion of dynamic behavior as the recov-
ery of the nominal phenotype landscape (5).

Recently, the control of Boolean networks has garnered consid-
erable attention (9–12). Most existing control methods aim for con-
vergence to a single desired attractor or phenotype by perturbing 
certain network nodes to fixed values (13–16). Several methods do 
focus on reverting the phenotype but do not consider reversion of 
the landscape itself (17–22). On the other hand, to revert the entire 
phenotype landscape, it is crucial to restore the phenotypes of all 
attractors and their corresponding basins, rather than merely driv-
ing all or some basins to a single desired attractor. Consequently, it 
is necessary to identify the phenotype of the attractor that corre-
sponds to each network state for effective reversion of the pheno-
type landscape. However, currently available control methods for 
complex networks do not investigate which attractors and their 
phenotypes correspond to which network states, making them un-
suitable for the reversion of the entire phenotype landscape. Thus, 
phenotype landscape reversion presents a challenging problem for 
the reverse control of altered biological networks.

A common method for precisely analyzing the dynamics of every 
Boolean network state is the semitensor product (STP) approach 
(23–28). This method calculates linear operator matrices algebra-
ically to represent the state transition graph (STG) of a Boolean net-
work. However, among studies using STP, including those focusing 
on controlling output nodes of Boolean networks (18, 19), no method 
currently exists to address reversion to a nominal phenotype land-
scape that considers the corresponding basins. Moreover, STP is criti-
cally limited by its high computational complexity with respect to 
network size and requires a novel approximation to extend its utility 
to large networks. Several non-STP methods allow for updating states 
in reverse, which could theoretically be used to find the phenotype 
basin but require similar complexity to brute-force simulation to char-
acterize the entire landscape (29, 30).

In this study, we present an algebraic reverse control (ARC) frame-
work to systematically analyze the distortion degree between the 
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nominal and altered phenotype landscape and identify control targets 
to recover nominal phenotype landscapes. We first develop an exact 
ARC framework that is suitable from small networks. We leverage 
linear operator matrices based on the STP, which represent nonlin-
ear state transitions of a Boolean network, to compute the attractors 
and their basins of attraction through eigen decomposition of linear 
operator matrices. Furthermore, by examining these attractors and 
their basins, we quantitatively measure the degree of distortion be-
tween the nominal and altered phenotype landscapes. We define the 
reverse control score such that a low degree of distortion in the con-
trolled phenotype landscape yields a high control score. Last, we pro-
pose a reverse control strategy that maximizes the reverse control 
score and demonstrate its effectiveness by identifying a reverse con-
trol target of a Boolean epithelial growth factor signaling network.

We then develop an approximate ARC framework to overcome 
the computational limitations of STP for large networks. A first-order 
Taylor approximation of the Boolean update logic is developed with 
high accuracy, which maintains the linearity required to calculate 
average basin states, unlike other approximations of similar com-
plexity (31). We examine the accuracy of the proposed approxima-
tion with various biological Boolean networks and demonstrate its 
utility through an example of reverting abnormal T cell overactiva-
tion on a large Boolean network. This suggests that the approximate 
ARC framework can restore the capacity for variable response that 
is characteristic of biological systems. The combination of a mathe-
matically comprehensive framework and a practically efficient ap-
proximation implies a wide range of applications for reverse control 
of phenotype landscapes.

RESULTS
Overview of phenotype landscape reversion
Biological systems process external stimuli and generate appropriate 
responses through signal propagation within a complex molecular 
network (Fig. 1A). Here, we introduce Boolean network modeling 
to systematically analyze the dynamic behavior of these networks. In 
general, input nodes receive external stimuli, internal nodes propa-
gate those stimuli, and output nodes determine an appropriate bio-
logical phenotype based on the propagated signals (Fig. 1B). During 
propagation, node state values are updated synchronously until the 
network reaches a steady state known as an attractor. The output node 
state values at each attractor can define the phenotype (Fig. 1C).

The attractor landscape can be represented by the STG, which 
includes all possible 2n network states and transitions between them. 
In synchronous dynamics, each weakly connected component of the 
STG represents a basin that converges to the same attractor, and each 
strongly connected component of the STG represents one such at-
tractor (Fig. 1D). The correspondence between the basins and their 
attractors is referred to as the attractor landscape. In the attractor 
landscape, basins are separated by the states of the input nodes and 
possibly by certain internal nodes states as well. The correspondence 
between the basins and their phenotypes is referred to as the pheno-
type landscape. When specific input node states are provided, they 
typically determine the phenotype. However, certain input node 
values do not uniquely determine the phenotype due to variations in 
their internal states (Fig. 1E).

If a node is fixed due to an alteration, the phenotype landscape 
can be distorted so that it no longer exhibits the nominal phenotype 
at each basin. In Boolean networks, a node can be fixed to 1 through 

a gain-of-function (GoF) alteration or fixed to 0 through a loss-of-
function (LoF) alteration. A distorted phenotype landscape results 
in mismatches between the basin and the output node values of the 
reached attractor (Fig. 1, F and G). For instance, due to an alteration, 
basin 1 fails to converge to attractor 1 and instead converges to at-
tractor 2, resulting in phenotype distortion. Similarly, basin 5 fails to 
converge to attractor 5 and instead converges to attractor 4, leading 
to distorted phenotypes.

To address these distortions, we define “reverse control” of the phe-
notype landscape as restoring the nominal phenotypes for each ba-
sin by perturbing an internal node in the Boolean network (Fig. 1, H 
and I). In contrast, existing control approaches aim to drive the net-
work to a single attractor or phenotype. In the example, the reverse 
control restores the attractors and their basins to be nearly identical 
to those of the nominal landscape, showing that reversion of the phe-
notype landscape can be approximately achieved.

Identifying reverse control targets for phenotype 
landscape reversion
We developed an ARC framework for quantifying the distortion de-
gree between the nominal and altered phenotype landscapes to iden-
tify potential reverse control targets. For small Boolean networks 
with up to 20 nodes, we presented an exact ARC framework based 
on the STP approach. For a given Boolean network, we first calcu-
late the exact basin states through eigen decomposition of the trans-
pose of the STP transition matrix. For each calculated basin, we 
compute its corresponding attractor and phenotype by consecutively 
multiplying the STP transition matrix under nominal, altered, and 
controlled conditions. We then measure the distortion degree be-
tween the nominal phenotype landscape and the altered or con-
trolled phenotype landscape by comparing the reached phenotype 
for each basin after convergence under various conditions. The con-
trol target is selected as the one that minimizes the distortion degree. 
To illustrate our framework, we analyzed a toy Boolean network that 
consists of one input node, two internal nodes, and one output node, 
which are respectively depicted in blue, green, and yellow. Applying 
our algorithm under the GoF alteration of node Y, we identified the 
inhibition of node X as the optimal reverse control target (Fig. 2A 
and Methods).

For large Boolean networks with more than 20 nodes, we de-
veloped an approximate ARC framework. Our approximated ap-
proach uses a first-order Taylor approximation to overcome the 
exponential complexity of the STP approach. This converts Bool-
ean update functions into linear update equations to approximate 
the forward and backward state transition matrices. First, we cal-
culate the approximated average basin states through backward state 
transitions from given major attractors identified by simulation with 
random initial states. Then, for each approximated average basin 
state, we compute its corresponding attractor and phenotype by con-
secutively multiplying the approximated forward state transition 
matrix under nominal, altered, and controlled conditions. As in 
the exact ARC framework, we measure distortion degrees and de-
fine the reverse control target as the one that maximizes the reverse 
control score (Fig. 2B and Methods).

Efficiency of phenotype landscape reversion
To assess the efficacy of the ARC framework, we first evaluate the 
accuracy of the approximate ARC framework on biological networks 
with respect to its estimation of the phenotype landscape. To do so, 
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Fig. 1. Phenotype landscape reversion. (A) Signaling pathway system within a cell. The cell receives external stimulus at receptors, and the signals propagate into the 
nucleus to produce appropriate responses. (B) Representation of a biological system as a Boolean network. White nodes represent high expression levels (“ON”), while 
black nodes represent low expression levels (“OFF”). (C) Steady state of a Boolean network for a given input signal. The output node states determine the phenotype of 
the attractor. (D) Attractor landscape of a Boolean network represented on the STG. Each circle is a network state, with arrows representing transitions between states. 
There are five attractors (colored circles) and their corresponding basins (colored area). (E) Phenotype landscape of a Boolean network. Each of the five basins converges to 
a corresponding attractor and produces a distinct phenotype. (F) Altered attractor landscape of a Boolean network. A distorted region, defined as states with mismatched 
phenotypes, arises due to alteration. (G) Altered phenotype landscape of a Boolean network. (H) Recovered attractor landscape of a Boolean network. The attractors and 
their basins are restored to be nearly identical to those of the nominal landscape through reverse control. (I) Recovered phenotype landscape of a Boolean network.
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Fig. 2. The ARC framework. (A) Exact ARC framework for phenotype landscape reversion of small Boolean networks. The algorithm input is the Boolean network. In step 
1, exact basins for each attractor are calculated through eigen decomposition of the transpose of the STP transition matrix. In step 2, reached attractors and corresponding 
phenotypes for each basin under nominal, altered, and controlled conditions are computed. In step 3, the phenotype landscape matrices under nominal, altered, and 
controlled conditions are compared to identify the reverse control targets. (B) Approximate ARC framework for phenotype landscape reversion of large Boolean networks. 
The algorithm inputs are the Boolean network, its attractors, and their relative basin size ratios. In step 1, approximated average basins for each attractor are calculated 
through the backward state transitions. In step 2, reached attractors and corresponding phenotypes for each approximated average basin under nominal, altered, and 
controlled conditions are computed. In step 3, the phenotype landscape matrices under nominal, altered, and controlled conditions are compared to identify the reverse 
control targets.
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we analyzed 43 Boolean networks from the Cell Collective database 
and several other previous studies (table S1) (32–36). We found that 
the approximate ARC framework empirically achieves 77% accura-
cy after convergence from consecutive backward and forward state 
transitions (Fig. 3A and Methods). Theoretically, we proved that the 
expected upper bound of the approximation error is about 10% for 
one-step state transition in biological networks (fig. S1 and the Sup-
plementary Materials).

To investigate the approximate ARC framework accuracy for iden-
tifying reverse control targets using our algorithm, we analyzed 300 
randomly generated Boolean networks. Half of the random net-
works were sparse, while half were densely connected, where bio-
logical networks are known to be generally sparse (37–40). The details 
of the random network generation process are explained in Methods. 
We approximated the rankings of all possible single-node controls 
and computed the Wasserstein distance between the exact rankings 
computed by brute force simulation and our rankings to calculate the 
similarity between them. The approximate ARC framework shows 
about 90% accuracy in the sparse random networks and 45% accu-
racy in the dense random networks (Fig. 3B). Because the normality 
are not guaranteed to the accuracy distributions, we performed the 
Wilcoxon rank-sum test between two accuracy sets and compute 
the P value < 2.2 × 10−16. We also computed the average in-degree 
of various networks including biological networks and observed that 
the median of the average in-degree of the biological networks is 
about 2, which is similar to the median of the average in-degree of 
the sparse random networks (fig. S2) (39).

Single-node control targets identified by the ARC framework tend 
to revert most of the nominal phenotype landscape. We used 33 net-
works among the 43 biological Boolean networks that contain 
output nodes, defined as nodes without any child nodes, since the 
phenotype is defined in terms of the values of output nodes. Using 
single-node control, 15 of 33 networks can restore at least 90% of the 
nominal phenotype landscape, and 23 networks can restore at least 
80% of the nominal phenotype landscape. Moreover, we observed 
that the distortion degree of the controlled networks is positively cor-
related with the distortion degree of the altered network (Fig. 3C). This 
correlation intuitively suggests that more drastic alterations tend to 
be less reversible by single-node control.

Last, the effectiveness of phenotype landscape reversion with the 
ARC framework was compared against two well-established Boolean 
network control methods. Because no existing method is designed 
to revert the phenotype landscape as a whole, we focus on the more 
limited problem of reverting the major attractor. We used the feed-
back vertex set (FVS) and the logical domain of influence (LDOI)–
based global stabilization methods for comparison (41, 42, 12, 17). 
The FVS is defined as a set of nodes whose removal removes all cy-
cles from the network. The LDOI of a given set of nodes and their 
state values includes those nodes and their corresponding state val-
ues that become stabilized after the first logical update of neighbor-
ing nodes. We used the same 33 biological networks with output 
nodes and set the effectiveness of FVS-based method to zero if the 
major attractor contains oscillating nodes because it is designed for 
fixed-point attractors. For each network, an altered node and its 
state values are selected as the node with maximum degree with the 
opposite state value in the largest attractor to induce a drastic altera-
tion. After the alteration, we compute the phenotype landscape re-
version effectiveness for each proposed control target by comparing 
the phenotype of converged attractors from random initial states 

under the nominal and controlled conditions through approximated 
brute force simulations.

We observed that the control targets identified by the ARC frame-
work exhibited the same or higher effectiveness than those identified 
by other methods, for every network (Fig. 3D). On average, ~85% of 
the nominal phenotype landscape can be restored through the best 
single-node control identified by ARC framework, 75% for control 
identified by the LDOI–based method, and 56% for control identi-
fied by the FVS method. After comparing the efficacy of the ARC 
framework, we also computed the expected required time for target 
identification in large networks compared to brute force simulation. 
We observed that the ARC framework is ~77 times faster than the 
conventional approximated brute force simulation (fig. S3 and Sup-
plementary Text).

Exact reverse control target identification in a small 
Boolean network
To demonstrate the utility of the exact ARC framework, we investi-
gated a reduced mitogen-activated protein kinase (MAPK) Boolean 
network to identify potential targets for restoring the phenotype land-
scape (43). The network comprises 4 input nodes, 10 internal nodes, 
and 3 output nodes (Fig. 4A). In the nominal phenotype landscape, 
~76% of the network states represent the apoptosis phenotype, ~15% 
represent a “no decision” phenotype where cells passively survive with 
no cell fate decision, and the remaining 9% represent a minor growth 
arrest phenotype (Fig. 4B). From the perspective of DNA damage, 
which is one of the input nodes in the MAPK network, all network 
states with DNA damage turned on eventually converge to the apop-
tosis phenotype, ensuring the proper removal of damaged cells.

 Phosphatase and Tensin homolog deleted on chromosome 10 
(PTEN) is a well-known tumor suppressor gene that prevents rapid 
cell growth and undesired proliferation by antagonizing the phos-
phatidylinositol 3-kinase (PI3K)–AKT signaling pathway (44, 45). 
The deletion of PTEN can lead to various cancers, including pros-
tate and bladder cancer (46, 47). The MAPK network reflects the criti-
cal distortion in the phenotype landscape under the LoF alteration 
of PTEN (Fig. 4C). In the altered phenotype landscape, ~99.7% of 
the network states represent a “no decision” phenotype, while only 
0.3% represent the apoptosis phenotype. This distortion indicates that 
cells with DNA damage are not removed, potentially leading to the 
initiation of bladder cancer (43).

We applied the exact ARC framework to identify reverse control 
targets for restoring the altered phenotype landscape under the PTEN 
LoF alteration. The inhibition of PI3K or AKT, both key nodes in the 
PI3K-AKT signaling pathway, was found to most effectively restore 
the nominal phenotype landscape (Fig. 4D). Previous studies have 
shown that AKT inhibitors can induce apoptosis in cells with an 
activated PI3K-AKT signaling pathway, a result consistent with our 
analysis (48). In the controlled phenotype landscape, ~80% of the 
network states represent the apoptosis phenotype, about 11% repre-
sent a “no decision” phenotype, and the remaining 9% represent a 
minor growth arrest phenotype.

Furthermore, we analyzed the mechanism of phenotype land-
scape reversion. Under the PTEN LoF, AKT tends to be fixed as 1 
because of the logical function for AKT: AKT = PI3K and not PTEN . 
When AKT is fixed as 1, the downstream apoptosis and growth ar-
rest nodes are typically fixed as 0, distorting the primary phenotype 
(Fig. 4E). To revert this distortion, the inhibition of PI3K or AKT rees-
tablishes the PI3K-AKT signaling pathway by consistently maintaining 
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Fig. 3. Phenotype landscape reversion efficacy. (A) Converged behavior of the accuracy for the first order Taylor approximation used by the approximated ARC frame-
work. The x axis is consecutive backward and forward state transition steps. Each dot represents the accuracy in a single network. (B) Comparison of target identification 
accuracy between sparse networks and dense networks (P value < 2.2 × 10−16). The accuracy in sparse networks is approximately twice that in highly connected networks. 
(C) Linear regression line represents the negative correlation between the distortion degree after alteration and reverse control score of the best single-node control 
(P value: 6.874 × 10−06, R2 = 0.4845). Each dot represents the computed value for one of 33 networks. (D) Phenotype landscape reversion effectiveness comparison among 
control methods. Among all 33 biological Boolean networks, control targets identified by the ARC framework are always equally or more effective than other methods. 
Because the FVS method is only applicable to fixed-point attractors, it has zero phenotype landscape reversion effectiveness on oscillating attractors. LDOI refers to the 
logical domain of influence.
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Fig. 4. Reversibility of the MAPK Boolean network. (A) MAPK Boolean network. (B) Phenotype landscape under nominal conditions. The network exhibits 22 attractors 
and their corresponding basins in the nominal attractor landscape, each mapped to the nominal phenotype landscape. (C) Altered phenotype landscape under a LoF of 
PTEN. Almost all network states result in a no decision phenotype, which means none of the output nodes are ON. (D) Controlled phenotype landscape under inhibition 
of the PI3K-AKT signaling pathway. This intervention restores the nominal phenotype landscape. (E) Mechanism causing the distorted phenotype landscape. The altera-
tion leads to activation of the PI3K-AKT signaling pathway, causing the inhibition of apoptosis and growth arrest nodes, resulting in the no decision phenotype. 
(F) Mechanism restoring the nominal phenotype landscape. Through inhibition of the PI3K-AKT signaling pathway, the flexibility of downstream apoptosis and growth 
arrest nodes is increased, enabling restoration of the nominal phenotype landscape. EGFR refers to the epidermal growth factor receptor.
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these nodes at a value of 0. This restoration increases the flexibility 
of downstream nodes, such as apoptosis and growth arrest, enabling 
the regeneration of the original apoptosis phenotype (Fig. 4F).

Approximate reverse control target identification in a large 
Boolean network
We then applied the approximate ARC framework to the T cell 
receptor (TCR) signaling Boolean network to identify reverse con-
trol targets for restoring the phenotype landscape (49). This net-
work consists of 7 input nodes, 79 internal nodes, and 12 output 
nodes (Fig. 5A). Key inputs—such as CD28, CD4, and TCR signals—
drive the activation of transcription factors at output nodes, which are 
critical for T cell function.

The analysis of the nominal phenotype landscape revealed seven 
phenotypes from P1 to P7 (Fig. 5B and fig. S4). Four attractors with 
small basin size ratios were considered negligible, leaving three 
major phenotypes P1, P2, and P3. P1 has the largest basin size ratio 
with activated serum response element (SRE), P21c, p277k, and 
forkhead box protein O1 (FKHR). P2 has the second largest basin 
size ratio with activated Bcat, Cyc1, BclXL, and p70s, and P3 has the 
third largest basin size ratio with activated p21c, p27k, and FKHR. 
Each of them represents a different T cell activation pattern from 
naïve T cells.

Previous studies have shown that sustained T cell activation with-
out external stimuli can lead to diseases such as leukemia or auto-
immunity (50, 51). To simulate this undesired T cell activation, 
candidate intervention sets inducing sustained full activation of 
T cells were proposed previously. From these, we introduced a 
LoF alteration in Gab2 and a GoF alteration in ZAP70. These altera-
tions caused significant changes to the phenotype landscape, particu-
larly due to the activation of AP1, cyclization recombinase (CRE), 
and nuclear factor of activated T cells (NFAT), which drive sus-
tained T cell activation. The altered phenotype landscape exhibited 
nine phenotypes, from AP1 to AP9 (Fig. 5C and fig. S4). Phenotypes 
AP1, AP2, and AP3 were observed in the nominal Boolean network 
but with altered basin sizes. AP4 and AP8 exhibited activated NFAT, 
which was absent in the nominal phenotype landscape. AP5, AP6, 
AP7, and AP9 exhibited simultaneous activation of AP1, CRE, and 
NFAT, leading to severe distortions in the phenotype landscape. These 
distortions due to sustained activation of AP1, CRE, and NFAT can 
cause indiscriminate T cell activation from naïve T cells, which leads 
to prolonged inflammation and tissue destruction.

Applying the approximate ARC framework, we identified the in-
hibition of LAT, a downstream node of ZAP70, as the most effective 
control target for restoring the nominal phenotype landscape (52). 
This inhibition successfully restored the phenotype landscape to its 
nominal state, resulting in three phenotypes, from CP1 to CP3 (Fig. 5D 
and fig. S4). Specifically, the three major phenotypes (P1, P2, and 
P3) were preserved, corresponding directly to the restored pheno-
types (CP1, CP2, and CP3). Basins and phenotype distributions were 
also similar to the nominal phenotype landscape, with negligible 
phenotypes excluded due to their small basin size ratios.

Under nominal conditions, the expression of AP1 and CRE is 
regulated by the c-Jun N-terminal kinase (JNK)/Jun and Ras/MAPK 
kinase (MEK)/extracellular signal–regulated kinase (ERK) pathways 
(53, 54). These pathways are influenced by upstream nodes, with 
VAV1 and sh3bp2 controlling the JNK/Jun pathway and Gads, PLCgb, 
and SLP76 controlling the Ras/MEK/ERK pathway. However, the 
combined Gab2 LoF and ZAP70 GoF alterations fix LAT and SLP76 

to 1, disrupting the regulation of both pathways and resulting in 
dysregulated AP1 and CRE expression patterns (Fig. 5E). To restore 
the phenotype landscape, the suppression of LAT releases this fixa-
tion, reestablishing normal regulation of VAV1, sh3bp2, Gads, and 
PLCgb (Fig. 5F). Consequently, the expression patterns of AP1 and 
CRE return to their nominal states, enabling the restoration of the 
phenotype landscape.

DISCUSSION
Distortions in the nominal dynamic behavior of biological systems 
caused by various alterations present significant challenges for their 
survival. Current methods for controlling biological Boolean net-
works primarily focus on determining the fate of systems or cells by 
fixing certain network nodes to achieve a single desired outcome, 
such as driving all cancer cell states to a single normal or normal-
like states through targeted molecular interventions. However, these 
approaches fall short of restoring nominal dynamic behavior that re-
establishes proper response patterns under diverse conditions. In 
this study, we introduced the ARC framework to reverse distorted 
phenotype landscapes, which represent the dynamic behavior of bio-
logical systems. The ARC framework can achieve the restoration of 
nominal dynamic behavior under altered conditions by identifying 
control targets, which can reverse the distortions.

The ARC framework can quantitatively measure the distortion 
degree of phenotype landscapes in altered biological networks and 
identify potential reverse control targets algebraically, unlike exist-
ing methods that focus on achieving a single desired state or disre-
gard which basins lead to which phenotypes. Phenotype landscapes 
provide essential insights on how biological networks can produce 
varying responses to the same input stimulus due to differences in 
their internal environments. States within each basin can represent 
enriched biological pathways or activated motifs in the Boolean net-
work, which cannot be identified based solely on input node values. 
Hence, restoring nominal behavior requires analyzing the entire ba-
sin within the phenotype landscape, which encompasses both input 
and internal node values.

To enable this analysis, we developed a method to identify the en-
tire basin through eigen decomposition of the transpose of the STP 
transition matrix. By consecutively multiplying the STP transition 
matrix with the basin, we can analyze the phenotype landscape alge-
braically. Quantifying phenotype landscape distortion and reversion 
effects allows the ARC framework to provide a detailed analysis and 
higher sensitivity in identifying effective reverse control targets for 
reversion of the phenotype landscape.

While the STP-based methodology enables precise quantification 
of phenotype landscapes, it becomes computationally impossible for 
large Boolean networks due to its exponential complexity. To ad-
dress this limitation, we extended our approach using a first-order 
Taylor approximation of the polynomial forms of Boolean functions. 
This approximation reduces computational complexity while pre-
serving the linearity needed to analyze the backward STG with high 
accuracy, allowing us to apply the method to large networks. Fur-
thermore, the ARC framework is more effective at phenotype land-
scape reversion compared to several well-established Boolean network 
control strategies and ensures the accurate identification of reverse 
control targets in sparse networks. Consequently, the ARC frame-
work provides an algebraic strategy for analyzing phenotype land-
scapes, including those of large biological Boolean networks.
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Fig. 5. Reversibility of the TCR signaling Boolean network. (A) TCR signaling Boolean network. (B) Phenotype landscape under nominal conditions. Half of the states 
produce the P1 phenotype, half of the remaining states produce the P2 phenotype, and the rest primarily produce the P3 phenotype. Other phenotypes have relatively 
small basin sizes. (C) Altered phenotype landscape under LoF of Gab2 and GoF of ZAP70. States from the basins of P2 and P3 now produce the AP1 phenotype, which is 
equivalent to P1. Other phenotypes are also distorted. (D) Controlled phenotype landscape under suppression of LAT. The three major phenotypes from the nominal 
phenotype landscape, P1, P2, and P3, are restored as CP1, CP2, and CP3. (E) Mechanism causing the distorted phenotype landscape. Because of the alterations, the JNK/Jun 
pathway and Ras/MEK/ERK pathway are dysregulated, leading to abnormal activation of AP1 and CRE. (F) Mechanism restoring the nominal phenotype landscape. 
Through suppression of LAT, the JNK/Jun pathway and Ras/MEK/ERK pathway are properly regulated, restoring normal phenotype landscape dynamics. NF-κB, nuclear 
factor κB; IκB, inhibitor of nuclear factor B.
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The identification of reverse control targets for phenotype land-
scape reversion suggests different insights into control strategies for 
biological systems. Conventional control methods typically reduce 
system entropy by fixing node values, limiting the ability of the sys-
tem to respond dynamically under nominal conditions. In contrast, 
reversing phenotype landscapes necessitates reintroducing eliminated 
responses, which requires increasing system entropy. In many bio-
logical contexts, such as information-processing in cell signaling, 
functional flexibility is essential to generate different responses de-
pending on the external stimulus. This functional diversity can be 
viewed as the entropy of the network. Remarkably, we observed that 
the entropy of the network often increases following the interven-
tion of reversible control targets found by our algorithm. Therefore, 
the ARC framework may be especially beneficial in biological con-
texts that require functional flexibility to recover behavior similar to 
that of the nominal system.

Reverting phenotype landscapes is inherently more complex than 
producing a single desired system response. Achieving this goal re-
quires restoring the ability of altered biological systems to generate 
appropriate responses across multiple internal and external conditions. 
Our approach provides an algebraic framework for quantifying re-
version effects and identifying control targets, offering a valuable tool 
for addressing this challenge. As a current limitation, cyclic attrac-
tors are handled by averaging their states, which may oversimplify 
their dynamics. This simplification could affect the accuracy of phe-
notype landscape reversion in networks with prominent cyclic be-
haviors. Future work could enhance the accuracy of this method by 
exploring higher-order approximations or suggesting other strate-
gies to deal with the cyclic attractors. In addition, the experimental 
validation of identified control targets will be crucial for translating 
these findings into practical applications in systems biology and ther-
apeutic development.

METHODS
Boolean network models
To systematically analyze the dynamic behavior of biological sys-
tems, we use mathematical models that represent system dynamics. 
In particular, we use the Boolean network model, one of the sim-
plest mathematical models, which effectively captures the essential 
dynamics of biological systems. In a Boolean network, each node 
represents a molecular component, such as a gene or protein, and is 
assigned a binary state either 1 (active) or 0 (inactive). The edges 
represent regulatory interactions between nodes, with a direction 
indicating influence from an upstream node to a downstream node. 
The effect on the downstream node is formalized by a Boolean func-
tion fi for the i-th node, which integrates the regulatory effects of its 
upstream nodes. The state of a Boolean network is defined as the 
collection of all node states at a given time. The network state vector 
x(t) at specific time t can be expressed as

where N is the total number of nodes in the network, and xi(t) is the 
state of i-th node at time t. The state of the i-th node at the next time 
step is determined by the Boolean function fi

(
xj∈Ii

)
 , where Ii is the 

set of upstream nodes indices for the i-th node. This relationship can 
be expressed as

Consequently, the network state vector at the next time step is 
given by the following synchronous update scheme

When the i-th node is altered, its Boolean function is also 
modified. In a LoF alteration, the Boolean function is altered to 
fi {x(t)j∈Ii} = 0 , meaning the node becomes permanently inactive. 
In a GoF alteration, the Boolean function is altered to fi {x(t)j∈Ii} = 1 , 
meaning the node becomes permanently active.

Algebraic representation of state transitions in Boolean 
networks through STP
Using the STP, which generalizes matrix products for matrices of any 
dimensions, the logical expressions in the Boolean update scheme can 
be converted into a linear matrix product form (24). This representa-
tion converts a Boolean network model into a linear system (25). The 
STP operation, denoted by ⋉, is defined as

where X is a row vector of dimension np, Y is a column vector of 
dimension p; Xi represents the i-th subvector of X, divided equally 
into p subvectors; and yi represents the i-th element of Y. For ex-
ample, X2 represents the second subvector of X, which is composed 
of the elements of X from indices n to 2n. To convert a Boolean net-
work model into a linear system, the network state vector x(t) must 
be converted into STP-based network state vector s(t) of dimension 
2N . The vector s(t) is computed as

where ci(t)=
[
1

0

]
if x

i(t)=1, and ci(t)=

[
0

1

]
if x

i(t)=0 . Thus, every 2N 

network state vector x(t) has a one-to-one correspondence to δi
2N

 in 
descending order, where 1 ≤ i ≤ 2N and δi

2N
 represents the i-th col-

umn vector of 2N × 2N identity matrix. Then, we defined the transfer 
function T and its inverse T−1 as

After converting x(t) into s(t), s(t + 1) is computed through lin-
ear multiplication with the 2N × 2N STP transition matrix L

The i-th column of L represents the next time step of the STP-
based network state vector of s(t) which corresponds to δi

2N
 (Fig. 6, 

A and B). Thus, the column vectors of L and their column indices 
represent all transitions in the forward STG of the given Boolean 
network. Consequently, the state transition of the Boolean network 
is reformulated as a matrix product between L and s(t). We further 
prove that eigenvectors of L corresponding to an eigenvalue of 1 rep-
resent attractor vectors in the STP format (Fig. 6C and the Supple-
mentary Materials).

To fully analyze the phenotype landscape, both phenotypes and 
their corresponding basins must be identified. To identify basins, we 
use the concept of backward state transitions in Boolean networks 
through time reversal (Fig. 6D). By reversing the directions of the 
arrows in the STG, a backward STG can be constructed (Fig. 6E). 

x(t) = {x1(t), ⋯ , xi(t), ⋯ , xN (t)}

xi(t+1) = fi {x(t)j∈Ii}

x(t+1)=
[
f1{x(t)j∈I1}, ⋯ , fi{x(t)j∈Ii}, ⋯ , fN{x(t)j∈IN}

]

X ⋉ Y =

p∑
i=1

Xiyi

s(t) = {⋉N

i=1
ci(t)}

T {x(t)} = s(t),T−1 {s(t)} = x(t)

s(t+1) = L × s(t)
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Note that past states map to future states in a many-to-one manner 
due to synchronous update, such that many past states converge to 
the same attractor. Despite this asymmetry in time, we prove that the 
backward STP transition matrix is equivalent to LT (Fig. 6F and the 
Supplementary Materials). The backward state transition can be 
converted into linear multiplication as

where 
∑

s(t−1) is sum of the past states, which become s(t) in the 
next time step. Furthermore, we demonstrate that eigenvectors of LT 
corresponding to an eigenvalue of 1 represent basin vectors in the 
STP format (see the Supplementary Materials).

Matrix representation of the phenotype landscape in the 
exact framework
To represent the phenotype landscape of Boolean network algebra-
ically, we first compute the attractors reached by each basin in the 
nominal attractor landscape. This can be calculated as Lk × B , where 

k is the diameter of the STG and B is the basin matrix of the Boolean 
network. The basin matrix is a 2n ×m matrix, where m is the num-
ber of basins in the nominal Boolean network. Each row of the basin 
matrix represents all possible network state vectors in the Boolean 
network with n nodes indexed in descending binary order. If Bi,j is 1, 
meaning the (i,j)-th element of the basin matrix is 1, then the i-th 
network state belongs to the j-th basin. Whereas if Bi,j is 0, then the 
i-th network state does not belong to the j-th basin. The basin ma-
trix can be computed through the eigen decomposition of LT , where 
the eigenvectors of LT corresponding to an eigenvalue of 1 constitute 
the column vectors of B. After we calculate Lk × B , we can get an at-
tractor landscape matrix of size 2n ×m matrix, where (i,j)-th element 
of the attractor landscape matrix is 1 if i-th network state is an at-
tractor of j-th basin and 0 otherwise.

The phenotype of each attractor is defined as the collection of 
output node states in that attractor. To compute this algebraically 
from the attractor landscape matrix, we generate an attractor-to-
phenotype converter (APC) matrix, which is a 2∣O∣ × 2N matrix. Here, 
∣O ∣ represents the number of output nodes, and 2∣O∣ represents the 

∑
s(t−1) = LT × s(t)

Fig. 6. Identification of attractors and basins. (A) Toy Boolean network with two nodes and their corresponding Boolean update functions. (B) Forward STG of the toy 
Boolean network. Each arrow represents a state transition, and states with colored backgrounds represent attractors. (C) Corresponding state transition matrix L. In the 
STG, the pretransition state determines the column index of L, while the posttransition state determines the column elements. Eigenvectors with an eigenvalue of 1 cor-
respond to each attractor. (D) Backward state transition process in the time-reversal Boolean network. (E) Backward STG of the toy Boolean network. Each arrow represents 
a backward state transition, and colored backgrounds represent basins. (F) Transpose of L, corresponding to the backward state transition matrix. Eigenvectors with an 
eigenvalue of 1 correspond to each basin.
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number of distinct phenotypes. The i-th column of the APC ma-
trix is computed as

where [O] extracts the indices corresponding to the output nodes. 
Using this, the phenotype landscape matrix under the nominal con-
dition ( PLMN ) of size 2∣O∣ ×m is computed as

Each column index of PLMN corresponds to a basin in the nom-
inal phenotype landscape, and the column vector represents the dis-
tribution of phenotypes in the attractor reached by that basin. Under 
the nominal condition, each basin must represent one phenotype. How-
ever, under the altered or controlled conditions, a distribution of phe-
notype can arise because a one-to-one mapping between phenotypes 
of the nominal basins and those under the altered or controlled con-
ditions cannot be guaranteed.

Alteration effect on the phenotype landscape in the 
exact framework
To model the effects of alterations (or controls) on the state transi-
tion process, we develop an effect matrix (E). The alteration effect is 
encoded in the matrix E, incorporating the effect on state vectors 
through matrix multiplication, expressed as

The i-th column vector of E for the single-node alteration is 
computed as

where [A] represents the index of altered node, σ(A) denotes the al-
tered node value, and σj

2N
 corresponds to the STP-based network state 

of altered x(t). If no alteration occurs, then E is equivalent to the 
2N × 2N identity matrix. To compute the E for the multiple node al-
teration, it can be obtained by multiplying the E of the individual 
single-node alterations that together constitute the multiple node 
alteration regardless of the multiplication order.

Using this framework, we compute the PLM under alteration con-
dition, denoted as PLMA , as

The second equality holds since E is an idempotent matrix.
We quantify the degree of distortion in the phenotype landscape 

due to alterations using the following formula

where ‖A‖1,1 =
m�
i=1

n�
j=1

∣aij ∣ for m × n matrix A. The normalization 

ensures that the distortion degree is expressed as a numerical value 
between 0 and 1, where 0 indicates no distortion and 1 indicates com-
plete distortion.

To identify reverse control targets, first we define the control 
score as

To compute the control score for the control, we calculate the 
distortion degree between PLMN and controlled phenotype land-
scape matrix ( PLMC ). Control targets, similar to alterations, set a 
node to a fixed value. PLMC is then computed as

where C is an effect matrix for both control when the altered nodes 
are fixed to altered states and controlled nodes are fixed to con-
trolled states together. We define a reverse control target as a target 
node state that produces a smaller distortion degree between PLMN 
and PLMC , in other words, produces a largest control score.

Taylor approximation of STP in the approximate framework
We extend our methodology to an approximate ARC framework for 
analyzing and identifying reverse control targets for phenotype land-
scape reversion in large Boolean networks, defined as networks 
containing more than 20 nodes. The computational complexity of 
STP-based methods prohibits their direct application to large net-
works. Brute force simulations could be used to analyze the pheno-
type landscape, but still this approach is limited as it can only identify 
major attractors and their relative basin size ratios rather than com-
plete basin states. This lack of basin information obstructs the com-
prehensive analysis of phenotype landscapes.

To overcome these limitations, we approximate the forward and 
backward state transition matrices, L and LT , by generating normal-
ized coefficient matrices derived from the first-order Taylor ap-
proximation of the polynomial representation of each Boolean update 
function fi . For each fi , the polynomial representation pi is computed as

where nj represents the j-th node state among upstream regulator 
nodes of i-th node and Ii is the set of upstream nodes for the i-th 
node. After converting the Boolean update logic fi into its polyno-
mial representation pi , we apply a first-order Taylor approximation 
to obtain linear equations between i-th node and its upstream regu-
lator nodes. For a node with ∣ Ii ∣ upstream regulators, we approxi-
mate pi at all 2∣Ii ∣ possible points, from (0, 0, ⋯ , 0) to (1, 1, ⋯ , 1) , 
and average the equations to derive the linear approximation. This 
average approximation is computed as

subject to pmin
i

≤ pi ≤ pmax
i

 , where pmin
i

 and pmax
i

 are the minimal and 
maximal approximated function values over all possible states of the 
parents of the i-th node. Since pi represents node states in the Bool-
ean network, its range is limited to [0,1]. Therefore, to standardize 
pi , we normalize it as

APCi = T−1
(
δi
2N

)
[O]

PLMN = APC × Lk × B

Altered s(t) = E × s(t)

Ei =

{
δi
2N

if STP−1
(
δi
2N

)
[A]=σ(A)

δ
j

2N
if STP−1

(
δi
2N

)
[A]≠σ(A)

PLMA = APC × (E×L×E)k × B = APC × E × (L×E)k × B

Distortion Degree =
1

2N
‖PLMN −PLMA‖1,1

Control Score = 1 −Distortion Degree

PLMC = APC × C × (L×C)k × B

pi =

1�
n1=0

1�
n2=0

⋯

1�
n∣Ii ∣=0

⎧
⎪⎨⎪⎩
fi
�
n
1
, n

2
, ⋯ n∣Ii ∣

�
×
�
xj∈Ii

�
xj

nj ×
�
1−xj

�1−nj�
⎫
⎪⎬⎪⎭

pi ≈
1

2∣Ii ∣

1�
n1=0

1�
n2=0

⋯

1�
n∣Ii ∣=0

⎡⎢⎢⎣
fi
�
n
1
, n

2
, ⋯ n∣Ii ∣

�
+
�
xj∈Ii

�
�pi

�
n
1
, n

2
, ⋯ n∣Ii ∣

�

�xj
×
�
xj−nj

��⎤⎥⎥⎦

normalized pi =
pi

pmax
i

− pmin
i

−
pmin
i

pmax
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− pmin
i
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Using the normalized pi for each node, we construct the ap-
proximated forward transition matrix L′

F
 , which has a size of 

(N+1) × (N+1) , with the first row and column corresponding to 
intercept term in the Taylor approximation. Each element of L′

F
 is 

computed as

To approximate LT , we need to construct a backward node up-
date truth table for each node. Let Di represent the downstream 
nodes regulated by the i-th node and Ui represent the union of the 
upstream regulator nodes of every node in Di . We can construct 
truth table with 2∣Ui ∣ rows and 

(
∣Ui ∣+ ∣Di ∣

)
 columns. In this table, 

the input values correspond to the node states in Ui , while the output 
values correspond to the node states in Di , as the nodes in Ui regulate 
the nodes in Di . After constructing this extended truth table, we can 
inversely determine the node states in Ui based on the node states in 
Di . Specifically, the i-th node state can be determined using the states 
of nodes in Di . For a given set of node states in Di , ni1 , ni2 , ⋯ , ni∣Di ∣

 , let 
gi be a function that determines the i-th node state based on the node 
states in Di . If there exists a row where xi1 = ni1 , ⋯ , xi∣Di ∣

= ni∣Di ∣
 , then 

the function gi is computed as

Otherwise, if there is no row where xi1 = ni1 , ⋯ , xi∣Di ∣
= ni∣Di ∣

 , 
then gi = 0 . Let qi be polynomial representation of gi . Then, qi can 
be computed as

After converting gi into qi , it can be approximated linearly and 
normalized as

Using the normalized qi , we construct the approximated backward 
transition matrix L′

B
 , which has a size of (N+1) × (N+1) . Each ele-

ment of L′
B
 is computed as

Matrix representation of the phenotype landscape in the 
approximate framework
To algebraically represent the phenotype landscape of a large 
Boolean network, we need to compute the basin matrix B’ in large 
networks. In the approximate ARC framework, the basin matrix 
is a (n+1) ×m matrix, where the n is the number of nodes and m 
is the number of major basins considered. The first row consists en-
tirely of ones, which represent the intercept term of first-order Taylor 
approximation. The remaining n rows contain the average state val-
ues of the n nodes for each basin. For a given basin b , the average 
node state values are defined as 1

∣b∣

∑
xj ∈ b

xj ,where xj ∈ b denotes a net-

work state included in basin b and |b| is the number of these states 
in the basin. Because it is impossible to know about the all network states 
that constitute each basin in a large network, we approximate the B’ as

where k is a parameter with a default value of 15, A′ is the attractor ma-
trix of the large Boolean network, and L′

B
 is an approximated backward 

state transition matrix. Here, the A′ is also (n+1) ×m matrix where the 
first row entirely consists of ones and remaining n rows, the remaining 
n rows represent the considered major attractor state identified through 
the simulation, and the m is the number of considered major attractors. 
If the major attractor is a cyclic attractor, then we use the average state 
value of the cyclic attractor as the major attractor state value.

After computing B′, we approximate the attractors reached by each 
basin in the nominal attractor landscape, similarly to the exact ARC 
framework. This can be expressed as

To compute the phenotype landscape matrix in the approximate ARC 
framework, we construct an approximated APC ( APC′ ) matrix. The 
APC′ matrix has dimensions ∣O ∣ × (1+N) , where ∣O ∣ is the number of 
output nodes and N is the total number of nodes in the network. Each 
column of APC′ is defined, such that the i-th column is a vector of 1 if the 
(i − 1)-th node is an output node and 0 otherwise. Using APC′ for the 
approximate ARC framework, the phenotype landscape matrix under 
nominal condition ( PLMN

′ ) has a size of ∣O ∣ ×m and is computed as

Each column index of PLMN
′ corresponds to a basin index in the 

nominal phenotype landscape. The respective column vector repre-
sents the output node states in the attractor reached by that basin.

Alteration effect on the phenotype landscape in the 
approximate framework
To introduce and model the effects of alterations (or controls) on 
the state transition process in the approximate ARC framework, we 
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develop an approximated effect matrix ( E′ ). The i-th column vector 
of E′ for the single-node alteration is computed as

If no alteration occurs, then E′ is equivalent to the (N+1) × (N+1) 
identity matrix. To compute E′ for a multiple node alteration, E′ from 
the corresponding individual single-node alterations can be multi-
plied together (in any order), as in the exact ARC framework. Using 
this framework, we compute the PLM under the alteration condition, 
denoted as PLM′

A
 as

Furthermore, to quantify the distortion degree in the phenotype 
landscape approximate ARC framework, we consider basin size ra-
tios and defined the distortion degree as

where ∣Attractors ∣ is the number of attractors considered and DR is 
a diagonal matrix whose diagonal elements correspond to the basin 
size ratios. We can get the basin size ratios from the initial simula-
tion to identify the considered major attractors.

To identify reverse control targets, we calculate the distortion de-
gree between PLM′

N
and the controlled phenotype landscape matrix 

( PLM′
C

 ). PLM′
C

 is computed as

where C′ is an effect matrix for control. Then, we define a reverse 
control target for phenotype landscape reversion in the approximate 
ARC framework as a target with smaller distortion degree between 
PLM′

N
 and PLM′

C
 than the distortion degree between PLM′

N
 and PLM′

A
 . 

In other words, we identify the best reverse control target, which has 
a largest control score defined as

Accuracy of attractor retention rate in the 
approximate framework
We calculate the accuracy of the approximated backward and for-
ward state transition processes by comparing them to simulation 
results. We start from the attractor vectors and compare it with the 
approximated attractor vectors through backward and forward state 
transition processes. The error is computed as

where A represents the set of major attractors, Ai ∈ A denotes each 
major attractor in the set and ∣Ai ∣ is the basin size ratio of the i-th 
major attractor. Then, the accuracy is computed as

Entropy of Boolean networks
We define entropy as the Shannon entropy of each node, where the 
probability represents the likelihood of the node state being in 1. The 
Shannon entropy of a node, with the probability p lying between 0 
and 1, is computed as

where p represents the probability of the node state being in 1. If 
p = 0 or p = 1 , then the entropy is 0. The entropy of a Boolean 
network is then defined as the average Shannon entropy of all net-
work nodes, excluding mutated or controlled nodes.

Random Boolean networks generation
We generate 300 random Boolean networks with an equal number 
of 6-node, 8-node, and 10-node networks. Half of the networks are 
sparse, with an average in-degree of either 1 or 2. The other half of 
the networks are dense, with an in-degree of n − 1 or n , given a net-
work with n nodes. The relationship between sparse networks and 
real biological networks is explained in the Supplementary materials 
(Supplementary Text and fig. S2). The code to randomly generate these 
Boolean networks are provided in our GitHub repository.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S4
Table S1
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