1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Trends Cell Biol. Author manuscript; available in PMC 2024 November 01.

-, HHS Public Access
«

Published in final edited form as:
Trends Cell Biol. 2023 November ; 33(11): 913-923. doi:10.1016/j.tch.2023.04.004.

Reversing pathological cell states: the road less travelled can
extend the therapeutic horizon

Boris N. Kholodenko1:2:3.& Walter Kolch1:2, Oleksii S. Rukhlenko?
1.Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin,
Ireland

2.Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Ireland

3-Department of Pharmacology, Yale University School of Medicine, New Haven, USA

Abstract

Acquisition of omics data advances at a formidable pace. Yet, our ability to utilize these data

to control cell phenotypes and design interventions that reverse pathological states lags behind.
Here we posit that cell states are determined by core networks that control cell-wide networks. To
steer cell fate decisions, core networks connecting genotype to phenotype must be reconstructed
and understood. A recent method, cell State Transition Assessment and Regulation (CSTAR)
applies perturbation biology to quantify causal connections and mechanistically models how

core networks influence cell phenotypes. cSTAR models are akin to digital cell twins enabling

us to purposefully convert pathological states back to physiologically normal states. While this
capability has a range of applications, we here discuss reverting oncogenic transformation.
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Go beyond genomics and gene expression snapshots

Genetic determination, long at the heart of thinking about cellular and organismal behavior,
had its resounding successes in explaining single gene disorders and Mendelian disease
correlations. Progress in sequencing technologies and proteomics has allowed us to
accurately detect cell mutations, alternatively spliced genes, and gene expression variation.
Yet, the phenotypic behavior of a cell remains elusive to predict from the genotype.

Given genomic data, it is difficult to predict how mutations or other variations in genetic
background affect responses to external cues and the outcomes of drug treatments that
affect signaling proteins. The reason is that genomics has a blind spot. It does not see the
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important intermediaries between the cell’s genotype and phenotype — the activation patterns
of signal transduction networks (STNSs), which are the dynamic control and communication
systems in a cell [1-4]. Here, we suggest a new approach to treat diseases and find new

drug targets that from the outset considers network context, i.e. the complex interactions
between genes and their products that ultimately specify the biological outcomes. We posit
that such an approach could broaden the space of potential drug targets to genes products
that are not mutated or otherwise genetically affected but are essential for disease processes
by supporting functions that enable cells to tolerate mutated, over- and under-expressed gene
products.

Dynamically changing network connections generate cell fate decisions

First insights into a connection between dynamic signaling responses and cell fate decisions
came in the nineties and have been related to the activation patterns of single proteins,

such as ERK and p53, a view that has persisted for a long time [5-8]. Recent progress

in multiplexed imaging techniques has enabled us to link signaling response patterns of
multiple proteins to cell fate decisions [9-11]. These signaling patterns are determined by
the dynamic, causal connections between cellular network components [12-17]. Depending
on the environmental cues, genetic backgrounds, and cell states, both the connections and
their strengths can change. Determining the local, causal connections is more difficult than
it might seem at first glance, because any change in a single node immediately propagates
through the entire network. Therefore, only global, system responses can be experimentally
measured following a perturbation that affects one or more network nodes. Although direct
protein-protein interactions can be detected by current techniques, the data cannot tell the
biological function of these interactions and determine how these interactions shape the
network activity patterns. The direction and strength of connections between network nodes
is often not quantifiable from experimental data, such as protein interaction data.

Several approaches, collectively known as Modular Response Analysis (MRA, Box 1),
reveal the quantitative topology of local, causal connections between network nodes. The
nodes can be single molecular components, as well as network modules, which are entire
pathways or groups of genes that together perform one or several identifiable tasks. A key

to the inference of causal connections is measuring the global responses of the network
components to systematic perturbations by small molecule inhibitors, environmental cues, or
SiRNA [18].

Understanding cell state transitions

The advent of single cell (sc)RNAseq has led to approaches to uncover cell trajectories that
map successive cell states using a pseudotime technique. Different computational techniques
permit the pseudotemporal ordering of cell trajectories, e.g., during epithelial-mesenchymal
transition, cell differentiation or tumor progression, using static snapshots of sScRNAseq data
taken as part of a time series [32—34]. Similar analysis can also be applied to cross-sectional
bulk or scRNAseq data obtained for patient populations by mapping these data on to
one-dimensional pseudotime [35]. Yet, pseudotime is not real time, it only groups gene
expression patterns that are similar to each other in a sequential order and cannot always
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correctly resolve the directionality and reversibility of timedependent events [36, 37]. Also,
pseudotime does not provide insight into mechanisms of cell fate decisions. This creates a
challenge for the analysis of time-resolved phenomena, for instance, for a cell progressing
through different differentiation states or for disease progression in a patient.

To address these limitations, an elegant approach was developed that determines RNA
velocity, i.e. the time derivative of the mRNA abundance, using a mature mRNA and

its unspliced precursors [38]. Quantifying gene transcript velocities allows a glimpse into
the future, i.e., the predicted future pattern of gene expression for the next cell state.
However, the implementation of this new concept assumed the splicing rate constant to be
constant and identical for all genes. Yet this central assumption is often violated [39-41].
Importantly, gene interaction dynamics determined by causal network connections could not
be reconstructed from scaled RNA velocity estimations.

Subsequently, a computational framework termed Dynamo was developed that infers
genome-wide absolute rates of transcription, splicing and degradation [36]. It uses metabolic
labeling of newly synthesized RNA to determine the amounts of unlabeled and labeled,
unspliced and mature RNA in single cells [42] and estimates kinetic rate constants and
RNA velocities using linear differential equation models [41]. Importantly, this method
reconstructs the RNA velocity vector field, which is the governing multivariate function that
defines the dynamical system describing the temporal evolution of gene expression in single
cells. Dynamo assumes that all cell states are reflected in the transcriptome, and these states
are attractors, i.e., stable steady-state dynamic regimes, determined by the reconstructed
RNA velocity vector fields [36]. In the simplest case, cell states are steady-state points in
the transcriptomics space where the amounts of all RNA forms do not change. Accordingly,
state transitions are determined by the cell trajectories starting at one steady-state point

and ending at the other. Dynamo also attempts to predict the cell trajectories during state
transitions, using the socalled least action path. In essence, this is a path that minimizes a
necessary deviation from the RNA vector field to enable a cell to traverse from one state to
the other [36].

The RNA velocity methods [38-40] and the subsequently developed approaches [36, 43]
need conventional or metabolically labeled sScCRNA data to infer the cell trajectories and
map cell states in the transcriptomics space. However, in medicine and pharmacology,

most of actionable targets are proteins, such as kinases, and neither of these transcriptomic
approaches can predict how signaling networks respond to drugs and overcome network-
encoded drug resistance that unfortunately is a major reason of cancer deaths. Although
disease biomarkers are often gene mutations, more than 80% of FDA approved drugs target
proteins [44]. From transcriptomics responses it is often impossible to understand a drug’s
mode of action and predict the optimal drug combinations to overcome resistance even
knowing the transcriptomic vector fields. Therefore, a critical gap is the remaining lack of
a mechanistic understanding of how protein networks drive cell state transitions that would
allow us to purposefully manipulate and control cell states. To bridge this gap, we need to
apply systematic perturbations and measure proteomic responses to uncover and reconstruct
core networks controlling cell-wide network responses and cell fate decisions.
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Systematic perturbations pave the way to understand cell fate decisions

Defining phenotypical cell states by molecular features and processes that cause them is a
grand challenge for modern biology. The popular view that cell fate decisions are driven

by master regulators is giving way to a more nuanced understanding of cell states resulting
from emergent dynamic properties of biological networks rather than single molecules

[45, 46]. Technological advances in global and multiplexed analyses now allow us to
scrutinize these concepts. The expression of genes, proteins and metabolites can now be
measured and quantified on a global scale, including changes in posttranslational protein
modifications, such as phosphorylation, acetylation, and ubiquitination. We also making
strides in correlating morphological and phenotypical features on large scales, and even can
predict gene expression changes based on cell morphology and vice versa [47-49]. Other
new additions to our technological arsenal are single cell omics technologies that routinely
can assess gene expression in single cells, with methods for single cell proteomics and
metabolomics being developed [50, 51]. Combining single cell omics with imaging adds
spatial resolution with several platforms for spatial transcriptomics and proteomics available
[52, 53]. These technologies open an unprecedented view of the molecular workings of a
cell, but we still struggle to causally and mechanistically connect them with phenotypical
changes and cell fates.

Distinct activation patterns of the cell-wide network are caused by different connections
and their strengths that promote different cell states and phenotypes. To permit insightful
analysis and mechanistically tractable interventions, we must find the minimal control
circuitry, in other words the core network that causes the characteristic changes that define
a cell state. We posit that such core networks exist and are much smaller than the cell state
specific networks which they control. A logical strategy is to determine the components
and causal connections of core networks that control cell state transitions. Snapshots of
the activities/expression levels of genes and proteins for different cell states can help us
partially answer this question, finding only the components of core controlling networks
(Figure 1). Core network components are the genes, proteins and pathways that make the
biggest contributions to the transition between cell states. These components are determined
by a State Transition Vector (STV) that is built using a quantitative approach known as cell
State Transition Assessment and Regulation (cSTAR, Box I1) [27]. The remainder of the
global network that characterizes a cell state is included as an additional node into the core
network. Conveniently, this node summarizes the molecular characteristics of a cell state
and, therefore, serves as a cell phenotype marker termed a Dynamic Phenotype Descriptor
(DPD).

Causal connections of the core network, including direct control of the DPD node by
biochemical modules, are identified using perturbations (Box I). The view that systematic
perturbations are necessary to infer biological functions and understand cellular network is
not new [19]. Molinelli et al [54] coined the term *“perturbation biology’ and used systematic
drug perturbations together with measurements of molecular and phenotypic responses

in order to construct and parametrize a computational model of signaling pathways in a
BRAF-mutant melanoma cell line. A novelty of cSTAR is its use of perturbation biology to
(/) identify and precisely quantify causal connections that determine core control network,
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(#7) use them to construct a core network model, and (iii) exactly quantify how this core
network influences the cell phenotype by measuring the connection signs and strengths to
the DPD module [27] As a result, the cSTAR-reconstructed control networks dramatically
differ from gene regulatory networks (GRN) obtained by bioinformatics methods, such

as random forests (GENIE3) and mutual information (ARACNE) that build associative,
correlative GRNs [55-57]. Computationally, cSTAR exploits a Bayesian MRA formulation
(BMRA) that provides the confidence intervals for causal connections and their strengths
[13, 18]. The inference of causal connections starting at biochemical core network modules
and ending at the cell phenotypic module opens the possibility to predict how the changes
in external cues and signaling modules affect the cell phenotype [27]. Importantly, cSTAR is
generic and in principle can work with any type of data that is deep enough to distinguish
different cell states.

Purposeful manipulation of cell state transitions and fates

Understanding of genetic and epigenetic interactions is a key to describe cell state
transitions [36, 61]. However, many of these processes are governed by upstream core
controlling networks, which receive a plethora of external cues, including pharmacological
interventions. The only means to precisely predict and explain the external cue effects and
the outcomes of experimental manipulations is to explicitly model the nonlinear signaling
dynamics that change the cell phenotype and determine cell state transitions.

In physics, particle movement is determined by the free energy landscape. In biology,

cell state changes during the development or pharmacological perturbations are described
using the metaphor of a cell maneuvering in Waddington’s landscape. Catastrophe theory,
dynamical systems analysis and other theoretical approaches have been applied to explain
cell differentiation through the lens of this metaphor [59, 60], but the corresponding
landscape models have been based on modeling the activities of a few gene or proteins
rather than cell-wide networks. A molecular state of a cell is given by a point in the
multidimensional space of molecular features, such as (phospho)protein concentrations or
gene expression levels. In the transcriptomics data space, SCRNA-seq based approaches can
obtain trajectories of cell movements in Waddington’s landscape using the RNA velocity
vector field [36, 37]. However, the complex and dynamic behavior of signaling networks that
control cell fate decisions is impossible to reconstruct from these data. Therefore, one cannot
precisely determine and purposefully control a cell’s movements in Waddington’s landscape
by targeted interference, e.g. via small molecules or biologicals. New approaches are needed
that can utilize the plethora of omics data produced nowadays to infer actionable therapeutic
interventions by meaningfully reducing the dimensionality of a cell’s possible movements
in this landscape. The cSTAR approach uses a handful of the DPD coordinates to precisely
map how a cell maneuvers in Waddington’s landscape and how external perturbations can
manipulate this landscape and the cell’s journey. Thereby, cSTAR dramatically reduces

the dimensionality of transcriptomics and other omics dataspaces using the DPD scores.
Figure 2, illustrates how core network components determine the cell fate decisions in
Waddington’s landscape (Box 2).

Trends Cell Biol. Author manuscript; available in PMC 2024 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kholodenko et al.

Page 6

Can cell oncogenic transformation be reversed?

Cancer is perceived as a genetic disease because cancer patients have oncogenic driver
mutations, gene fusions, or chromosome aberrations. The dependence of cancer cells on
mutated proteins, dubbed oncogene addiction, is the rationale to target mutated or amplified
oncoproteins for cancer treatment. Yet, a surprisingly large number of oncogenic mutations
are detected in normal tissue cells, and the number of mutations is increasing with age [62-
65]. This suggests that merely the presence of oncogenic mutations does not automatically
cause cancer. The oncogenic cell state is conditional and depends not only on mutations but
also on the intercellular and intracellular molecular profiles and the environment. Multiple
observations indicate that in some circumstances, the phenotypes and omics profiles of
clinical grade cancer cells can be spontaneously reverted to normal, presenting tumor
reversions [66]. We posit that the therapeutic target of killing all tumor cells can be extended
by the goal of reverting the tumor phenotype, similarly as it is pursued by differentiation
therapy in cancer [67-71].

Only the concerted action of multiple proteins can revert cancer, yet cell- and patient-
specific molecular pathways of tumor reversion are not established. This, in particular,
limits differentiation therapies of leukemias. Proof of principle differentiation treatment
by all-trans retinoid acid (ATRA) and arsenic trioxide (ATO) is successfully applied in
the clinic for acute promyeloid leukemia (APML) and neuroblastoma [72, 73]. APML is
characterized by translocations of the retinoic acid receptor gene (RARA), generating fusion
oncoproteins that exert a dominant negative effect on wildtype RARA function and block
myeloid differentiation at the promyelocytic stage. Neuroblastoma has not alterations in
RARA, but entails a differentiation block of peripheral sympathetic neurons, which can
be counteracted by ATRA treatment. This is successfully used in the maintenance therapy
of high risk neuroblastoma [73]. While these treatments provide proof of principle that
malignant transformation can be reversed, methods to systematically discover molecular
targets that can mediate such reversion are lacking.

An in-depth cSTAR analysis helps the discovery of specific molecular targets to control
and revert oncogenic transformation. The STVs based on multiomics data from oncogenic
and physiological cell states indicate a path to normalize molecular profiles and determines
components of core networks controlling cell transformation (Box 2). The STV contains

a ranked list of molecules that need to be perturbed in order to change cell states. Such
perturbations can be any interventions that change the concentration or activity of the
molecules in question, such as drugs, siRNA, or PROTACSs. The effect of the interventions
cannot be predicted from the STV alone, but have to be experimentally tested. However,
these tests can be used as perturbation data. In our experience a handful of perturbations
targeting the highest ranked 5-10 molecules is sufficient to reconstruct the core network or
at least calculate the DPD. The core network has signed and weighted edges allowing the
researcher to choose the most effective targets via sensitivity analysis of the core network.
If the perturbations are insufficient to reconstruct the full core network, the DPD informs us
about the qualitative and quantitative effects of a perturbation, i.e. towards which cell state
the inhibition or activation of a molecule will push the biological system. This information
enables us to select and validate the most promising targets within the same experimental
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framework and even without detailed prior knowledge about the network topology. Thus,
interventions to purposefully manipulate cell states can be systematically designed with
modest experimental and computational investments. These properties distinguish cSTAR
from other elegant mechanistic methods to infer targets, such as the methods developed by
Mochizuki’s group, which require a detailed prior knowledge of the network [74]. In cSTAR
the reconstruction of causal connections of core networks and the influence of the changes
in molecular pathways on cell phenotype given by connection to the DPD module leads

to a mechanistic model that can describe nonlinear network dynamics and cell phenotypes,
thereby creating a digital twin of a living cell [27]. This dynamical model - digital cell twin -
predicts how cells maneuver in Waddington’s landscape following purposeful manipulations
and environmental perturbations. It will help us to deliberately direct cells from oncogenic
states to physiologically normal states, reverting oncogenic transformations. The ability of
cSTAR to identify molecular targets for the reversion of oncogenic transformation as well as
their network context, offers two ways of pharmacological interventions. One is to directly
inhibit the molecules that maintain the oncogenic state, or to activate the molecules that
promote the differentiated state. As these principles are complementary, they should result
in synergistic actions. The second way is to exploit the network context. If a target is

not directly druggable, its effects on the network still could be curtailed or controlled by
inhibiting another molecule that mediates these effects. This strategy broadens the target
space and makes it more likely that appropriate drugs are available. The vast majority of
signaling networks derailed in cancer comprise protein kinases, and the number of potent
inhibitors is steeply increasing. Imatinib, the first kinase inhibitor in oncology, was approved
for clinical use 20 years ago. Now, there are 87 approved kinase inhibitors targeting 45
kinases, and inhibitors against another 110 kinases are under development [75]. Thus, an
increasing number of interventions becomes feasible.

Concluding remarks

New approaches to understand core networks that control the cell phenotype and to
construct mechanistic models of cell state transitions will create digital twins of living
cells. These digital twins will allow designer approaches to manipulate cellular pathways
and purposefully direct cell traverse through Waddington’s landscape to desired cell
states. Digital cell twins will open new avenues in medicine and pharmacology where
precise therapeutic treatments will be underpinned by personalized mechanistic models.
Manipulation of tumor reversion pathways based on these mechanistic models will create
new cancer treatments (see Outstanding Questions).
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Glossary of terms. (not more than 450 words)

Bayesian MRA

Bayesian statistical reformulation of exact MRA equations that incorporates noise and does
not require a complete set of perturbations. It combines both the existing knowledge as a
prior distribution and the likelihood function to calculate the posterior distribution of

Dynamic Phenotype Descriptor (DPD)
quantifies cell phenotype using a score that is related to the distance from a current cell state
to the state separating surface.

Dynamo

Computational method to determine genome-wide absolute rates of transcription, splicing
and degradation based on metabolic labelling of newly synthesized RNA to determine the
amounts of unlabeled and labeled, unspliced and mature RNA in single cells.

Global responses
Changes in mode activities following the network relaxation after perturbations to one or
more nodes.

Jacobian matrix
Matrix of partial derivatives of the vector function of the dynamical system that describes
the network behavior.

Likelihood function used by BMRA
Probability distribution of global responses as a function of the distribution of causal
connections taken from MRA equations.

Local, causal connections

Direct connections between modules that are not mediated by other modules, aka local
responses. These are the edges of a directed network graph, and their weights are connection
coefficients or strengths that can be negative (inhibition) or positive (activation).

Modular or nested networks
Each node is a pathway or a subnetwork containing other nodes.

Modular Response Analysis (MRA)
a method based on exact deterministic equations to quantify unknown, causal connections
using perturbation data.

Network components or nodes
Can represent physical entities and/or quantities, e.g. protein concentrations, concentration
of phosphorylated species, protein activities, concentration of transcripts etc.

PROTAC (Proteolysis-targeting chimeras)
Artificial proteins consisting of a targeting unit that binds to the target and a unit that recruits
an E3 ubiquitin ligase which marks the target for degradation by the proteasome. In contrast
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to conventional inhibitors PROTACSs lead to the removal of the target protein by inducing its
degradation.

Pseudotime

Positioning of cells along cell’s trajectories based on the single cell gene expression profiles
measured by scRNAseq. It quantifies the progression of the underlying biological processes
that change the cell transcriptome.

Quantified network topology
Matrix of connection coefficients obtained by MRA, which is the Jacobian matrix
normalized by the diagonal elements.

RNA velocity of single cells
Method to determine the time derivative of the mMRNA abundance from a snapshot of
single-cell RNAseq, using a mature mRNA and its unspliced precursors.

State Transition Vector (STV)
A vector of unit length, which determines the motion in the molecular dataspace that crosses
the state separating surface and converts a given cell state to a distinct state.

Waddington’s landscape

A qualitative biological model where cells move through a landscape of mountains and
valleys as rolling marbles from one (semi)stable state to another during the developmental
process
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Box I.
Modular Response Analysis in a nutshell.

MRA is a method for the precise quantification of local, causal connections. A natural
way to quantify a direct connection from node B to node A is to consider the fractional
change in the output of A (concentration or activity) brought about by a 1% change

in the output of B, while keeping the activities of all other nodes frozen to prevent

the propagation of the change in B. This definition of the local connection coefficient
from B to A in a network of A/nodes is intrinsically linked to the Jacobian matrix

of Ndifferential equations that govern the time course of the activities of all network
nodes [18, 19]. In real life, any change in B propagates not only to node A but also

to other nodes, directly or indirectly. The local, direct effects of B on the other nodes
is challenging to measure. From the change in node A upon a perturbation to B, it is
erroneous to conclude that there is a causal, direct connection between B and A, because
this change can be caused by the changes in other nodes, different from B.

For a network of N nodes, MRA demonstrates that the measurements of global, systems
level changes following N perturbations allow us to reveal the precise values of all
network connections, including feedback loops [20-22]. Mathematically, the vector that
contain all connection coefficients to each node (A) is calculated as the vector that is
orthogonal to A1 vectors of global network responses to perturbations, none of which
directly affecting node A [19, 23]. Repeating this calculation for each network node
completely restores all network connection coefficients. Importantly, MRA allows to
integrate multiple data types, as its input are dimensionless fractional changes, allowing
to reconstruct causal network connections using different perturbation data, e.g., [24-27].

Classic deterministic MRA is sensitive to biological and measurement noise and
requires N perturbations for a network of A/ nodes, which make the reconstruction

of quantitative topologies of genome-wide networks impractical. A Bayesian MRA
formulation (BMRA) is robust to noise, does not require to perturb all network nodes
and, critically, uses the existing knowledge as a prior distribution of the probabilities
of network connections, Figure | Box I [18]. The prior network can be taken from
existing databases, such as KEGG [28], String [29], or Reactome [30]. Computational
experiments show that even when the prior information is inaccurate for half of the
network edges, BMRA infers a nearly perfect network topology [13]. BMRA and
other statistical MRA reformulations can handle networks of several hundred nodes
[31]. Because network connections are quantified in terms of the elements of the
Jacobian matrix of the underlying dynamical system, quantitative BMRA reconstruction
of network topology helps us to create a mechanistic dynamical model of the network
and determine the confidence intervals for model parameters [13].
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Figure 1 Box I. A diagram of BMRA pipeline.
BMRA, Bayesian MRA formulation, uses the two following inputs: (1) measured

responses to perturbations and (2) a prior network, derived from the existing knowledge
if it is available, or a non-informative prior network (generated by the equal probability
distribution for the presence or absence of a connection when the prior knowledge does
not exist). In contrast to the deterministic MRA, BMRA allows to reconstruct networks
using the datasets in which not all nodes are directly perturbed. MRA equations serve as
the likelihood function for BMRA. Prior network connections and experimental data are
fed to the Bayes rule to generate a posterior distribution of network connections and their
strengths.
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Box Il.
Linking the cell phenotype to molecular features using cSTAR.

All concentrations/activities of cellular molecules, measured by omics technologies

and termed molecular features, are perceived as points in a multidimensional space (a
snapshot of the cell’s molecular machinery). Machine learning techniques can distinguish
between distinct cell states in a highly multidimensional omics space [58]. In quantitative
terms, distinct cell states are local minima, which are attractors of a dynamical system
that describes cell maneuvering in Waddington’s landscape [59, 60]. The cSTAR
approach uses support vector machines (SVMs) to construct separating surfaces between
distinct cell states in the omics space [27]. For SVM with linear kernels, these surfaces
are hyperplanes that maximize the distance between data points belonging to different
cell states. Depending on the number of states there can be one or more separating
hyperplanes. A cell that progresses from one state to another can take different routes
depending on the external and internal cues, but any possible route must cross the
separating hyperplane. cSTAR selects the shortest route and builds a State Transition
Vector (STV). In the omics dataspace, the STV indicates a path leading from the centroid
of a point cloud of one cell state to the centroid of another cell state or can also

be defined as the vector normal to the separating hyperplane. Each STV component
determines the contribution of the corresponding omics feature to the difference between
cell states. A key advantage is that the absolute values of the STV components directly
rank individual genes or proteins according to their importance in switching cell states.
Thus, high-ranked STV components determine components of a core subnetwork that
controls cell state transitions via the cell-wide network [27].

CSTAR quantifies the cell phenotypic state using the DPD that represents the remainder
of the cell-wide network upon which the core network acts to drive cell state transitions.
The DPD is determined in the omics space as the Euclidean distance from a current

cell state to a state separating surface along the STV. The cSTAR/BMRA framework
allows the inclusion of any functional object defined in terms of input-output relations
in a network, and we incorporate the DPD in a core network [27]. Most importantly,
experimental perturbations to biochemical modules of the core network allow us to
determine direct effects of the changes in the pathway activities on cell phenotype
defined by the DPD score.

Critically, multiple omics datasets, such as MS (phospho)proteomics, Reverse Protein
Arrays, single-cell resolution mass cytometry and single cell and bulk RNAseq are
readily integrated into cSTAR by comparing the normalized DPD changes following
perturbations. For instance, proteomics and transcriptomics data of a variety of cell lines
and individual cells sets were integrated in order to quantitate the extent (full or partial)
of epithelial to mesenchymal transition (EMT), and the potency of different drugs to
suppress EMT were predicted for different cellular context [27].

For a cell passing through several phenotypic states, as in the development of fully
differentiated blood cells from hematopoietic stem cells, there are several STV vectors
and DPD scores that quantify directions of transitions between the different states. In
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such cases, a core network combines the highest rank components of each STV and
several DPD nodes that score different cell phenotypes.

Computational models allow us to calculate the changes in the DPD scores upon
environmental or experimental perturbations and predict how cells traverse through
Waddington’s landscape. These models are based on the acquired omics data and
quantified core network topology (Box 1). Following a perturbation, a cell’s movement
in Waddington’s landscape is governed by two forces that usually counteract each other.
One is a driving signaling force that emerges from the changes in core network activities,
and the other is a restoring, gradient force that pushes the cell back to its original
(meta)stable state, provided the deviation from this original state has not been too

large (Figure 1). The pathways with non-zero connections to the DPD node generate

a signaling driving force that affects and changes the DPD score. This force is calculated
using the BMRA inferred pathway influence on the DPD node. The gradient force is
determined by the derivative of the restoring potential with respect to the DPD. The
restoring, gradient force initially increases with the distance from the stable steady state
in the DPD space but then decreases to zero at the cell state separation surface.
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Outstanding Questions.

. How can we best combine machine learning/artificial intelligence analysis of
omics data with mechanistic, structure-based modeling of cell systems?

. How can we derive a detailed and mechanistic understanding of interactions
of pathologically changed cells with multiple cell types in tissue?

. Can we develop drug targets that account for the wider biological network
context?
. Can we manage cancer like a chronic disease by controlling cell states of

cancer cells, immune and other host cells?
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Highlights
. The ability to determine cell states is essential for understanding cell fate
decisions
. Recent methods, such as pseudotime and RNA velocity, allow mapping cell

transcriptome states, yet thorough understanding and purposeful manipulation
of cell state transitions and fate decisions are lacking

. A cSTAR approach determines a core regulatory network that controls cell-
wide network and ‘computes’ cell fate decision

. Perturbation data are crucial to infer causal connections of core networks

. Based on precise reconstruction of core networks, cSTAR can steer cell fate
decisions that can help to reverse pathological cell states
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Figure 1. cSTAR pipeline help us deliberately convert cell states.
cSTAR uses omics data as the input and ML to classify distinct cell state and phenotypes.

It constructs the STV in the molecular feature space that indicates a path between distinct
cell states, followed by the selection of high ranked STV contributors, which determine
components of a core network controlling state transitions. Systematic perturbations and
omics data on perturbation responses are used to infer directions and strengths of causal
connections of the core network (including feedback loops) by BMRA. Incorporation of

the DPD module summarizes cell-wide network and links molecular features to the cell
phenotypes. Network reconstruction is followed by a mechanistic model of the core network
and cell state transitions. This model predicts cell responses to small molecule therapeutics
and transitions between cell states in Waddington’s landscape, which must be validated
experimentally.

Trends Cell Biol. Author manuscript; available in PMC 2024 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kholodenko et al.

Page 20

Can be reconstructed using
pseudotime methods

YVI83 buien
pajanijsuodal aq ue)

Figure 2. Signaling networks shape the landscape of cell fate decisions.
A now famous model of Waddington’s landscape describes cell state changes by cell’s

movement in a landscape of mountains and valleys, in which different valley corresponds
to different cell fate decisions [76]. Pseudotime methods allow identifying cell’s trajectory
at the landscape, and RNA velocity methods allow reconstructing the landscape in the
transcriptomics space. The advantage of cSTAR is that it reconstructs both cell’s trajectory
and Waddington’s landscape, but also connects it to the dynamics of signaling networks
(shown as connected nodes shaping cell fate decisions). Not only cSTAR helps us
understand cell state transitions but allows to steer this process in desired direction.
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